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1. INTRODUCTION

A Important quantity obtafnable from satellfte to-satellite tracking (55T)
fa the line-of-sfght accelerati<n. The utilizatfon of this quantity has been
attractive to geophysicists especlially because the line-of -sight acceleration
~can be expressed almost entirely in terms of the gradient of the disturbing
potential residual to a chosen reference gravity field. In previous reports and
papers, approximations were introduced into the )ine-of-sight acceleration model
which transformed the above qualifier "almost entirely” into “entirely”., If
warranted, such approximations are of great practical value since they lead to

an efffclent adjustment.

Having the importance of a rilgorous line-of-sight acceleration model in
mind, we address the lssue of errors in the approximate mode]l from both the:
analytical and the computational standpoints, the latter via results of computer
simulatfons. The emphasis In this task s on SST in the high-low mode, a '
concept that has grown popular among geophysicists as {8 documented, e.g., by
Jekell and Upadhyay [1990]). These authors, as well as Gleason [1901]), envision
the "low” satellfte as the space shuttle (or a satel)lfte at the shuttle's
altitude), and the "high” satellite as one (or more) of the OPS satellites. Due
td the great altitude of the “high” satellfte, the gradient of the dlstufhing
potgntinl residual to a sufficiently detalied reference gravity ffeld, such as
that represented by a (6,8) or an (8,8) aphorjcal-harmonic expansfon, s
negligibly small at polnts along the "high” orbit. This allows for a
simplification whereby the gradient of the disturbing potential may be
considéﬁed only at observation points along the “"low"” orbfit. However, the
derfvations in the present study will) proceed without this aimplification, which

will be {ntroduced only as 4 Jast ntep.

The ensufng "last-atep” formula, developed Jater on as equation (31), o

written {n the form
e C
6[) & ré}i]og 4

Here and throughout, the notation & facentifiles a gliven guantity in A resfdual
gravity fleld, 1.e., the difference between this quantity {n the actual, or
complete, gravity fleld (where 1ts symbol hag no superscript) and the same
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quant ity as computed in a reference gravity fleld (where fte symbol has the
supergeript ¢). Thus, we have

db & B - ﬁc « pegldual line-of-sight accelerat.. .,

where ﬁ is the line-of-sight acceleration in the complete gravity iield and ;c
is its counterpart in the reference gravity field; and

sy - & - £
where, in the fnertial coordinate system (X,Y,Z). glu(ﬁj,Ql,il) is the
acceleratfon vector of the first (low) satellite in the complete gravity field
and 3? 1Q its counterpart in the reference gravity field; in addition, gc is
the line-of-sight unit vector as computed in the reference gravity field.

In following the derivation presented in [Hajela, 1978). OGleason [1991)
fntroduces the approximations a}luded to earlier, and obtains the result
corresponding to the above "last-step” formula with the dots removed (cf.
equation 3, lbid.);’

TR R - |

Thid/outcome is reached also by Jekelj and Upadhyay [1990), whose derivation
agrees with that in [Rummel, 1980). Thus, all four references just mentioned
arrfve at the same approximate model. OGleason [19901) uses it in the
intcrmcdlntc form (implied by equations 3 and 10, [bid.):

8p = -9T(X,¥,2) " ,

where YT(X,Y.Z2) is the gradient, expressed In fnertial coordinates, of the
disturbing potential at the location of the "low” satellite. From the known
time ¢t assocliated with 65. he then expresses vT in earth-fixed polar
coordinates. Upon computing a priori covariances as needed for the collocation

“adjustment model, he uses the latter to obtaln an optimal solution for a set of

; f>thu mean radfal components of the surface gravity disturbances.

[

Clearly, the accuracy of the results from simulated observations as {n
[Gleason, 19901], and, especially, the accuracy of the gravity-field
determination where the observables are actual line-of-sight accelerations
hinges on the accuracy of the mathomatical model. jn order to design a rigorous
procnduré for adjusting such accelerations, one has Lo express the form of, and
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evaluate the effect of, the terms represented by the dots in the "lagt-step”
formula presentéd’at.the outset. Some, perhaps most, of these terma.méy 50
negligible in general. Others may be negligible upon certuin restrictions (on
the time interval between the epoch of observation and the epoch at which the
state vector s given, on the minimal degree and order of the reference gravity
field, etc.). However, §f there exists a term thet cannot be made negligibly
small, preferubly much smaller than 0.1 mgal characterf{zing the magnjtude of the
nofse in an electronically-induced signal, this term should be a part of the
mathematical model. In theory, it should then be taken into account in the °
format jon of observation equations, a prior§ covariances, etc.

Some of the results presented by Gleason (1991] indicate that not all of
the terms represented by the dots (discussed above) are negligible. When he
attributed zero errors to observables simulated in one-second intervals within
A 10°-square equatoria) oceanic ares, he recovered the “ground truth” {n 1°
squares with no better than a 1.1 mgal r.m.s. error and a 3.8 mgal maximum error
(woruo/ronults were obtafined for lower observational density). In performing
uumparhblo simulations over A larger (15°x20°) and geophysically less tranquil
continental area, he arrived instead at a 1.6 mgal r.m.s. error and a 6,0 mgal
maximum error. It is likely that the cited errore are imputable to the above

model {ng approximations, especially upon considering the magnification of errors o

caugsed by the downward-continuation problom. Therein lies the motivation for a
refinement of the traditional line-of-sight acceleration model.

The present study concentrates on the development of the mathematical model
rigorous to within the first-order differential quantities. Two second-order
differential quantities will appear (temporarily) incidental to the derivations,
while further second~ and higher-order differentfal quantities will be mentioned
witheut belng expressed explicitly. Although the "last-step” formula [mplies
the simplificatjon whereby the position vector, the velocity vector, and the
acceleration vector of the "high” satellite {n the complete gravity field are
s#qual to their counterparts computed in the referonce gravity field, this
simplification will be used nefther In the derivations nor in the simulations.
The simulations will enpcompass two "Jow” arcs passing over the above-mentioned
oceanic aréh, each limited to three minutes {n duratlfon from the epoch of a .
¢ziven state vector. The second arc wil] be used in conjunction with the
reference flelds repregented by (6,6), (8,8), and (10,10) spherical-harmonic




éiﬁnnslons, whereas for the first arc we will consider only the (6,8) reference
field, The simulations will serve not only for the verification of the derived

. mathematical model, but also for the assessment and possible simplifications of
this model in view of a sufficiently rigorous, yet computationally manageable
adjustment of the line-of-sight accelerations in the high-low mode.

A8 é historical note, the first part of this report (Chapters 2 - 5) was
presented fn a simjlar form in a GL (AFSC) internal paper, "Satellite-to-
Satcllite Tracking in the High-Low Mode: Line-of-Sight Acceleration in a
"Residusl Gravity Field”, April 1990, Two months later, a OL scientist, Mr,
David M. Gleason, supplied the author with computer simulations supporting the
theoretical findings. An expanded version‘ot the paper including a summary of
the computer simulations was published as the author's Status Report No. 8 under
the present. contract, perjiod 4 April 1990 - 3 July 1990. A year later, another
Pl (gormerly OL) scientist, Dr. Christopher Jekelf, derived an equivalent
algebraic result for 65 by taking a formal differential of ;. However, the form
of this result [s not considered final. A similar derivation is presented in
the Appendix herein, where the differential is transformed with the aid of 4
relations from Chapters 3 and 5 {nto the final formula of Chapter 5 (the generai
version before the last-step simplification). The Appendix is fnstructive in

e R TEY

conf{{rming the main outcome of Chapter 5 via a semi-independent route, shorter

overall than the route of Chapters 2 - 5. Other points of discussion are
presented in the Appendfx itgelf.

WA G L e T
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2. OEOMETRIC QUANTITIFES IN THE COMPLETE GRAVITY FIELD

The nptntlon in this analysis is adopted for the most part from [Rumme),
19680)., Thus, the inertial axes are denoted by the letters X, Y, and Z, as are
the satollite coordinates; the latter are attributed the subscript 1 for the
first satellite (here low), and the subscript 2 for the second satellite (here
high). The first~order time derivative is identified by a dot, and the second-

order time derfvative, by a double dot. Accordingly, the basic symbolism {8
presented as follows:

Sat., 2: 12 5 (xz, Yz, Zz), &2 2 (Xz, Yz, 22). 52 . (Xz. Yz, Zz).
whore the underlined quantities are vectors. The vector differences in

position, velocity, and accelerstion are symbolized by

Xpc % & Kok K. XKk (1)
A8 will become apparent, the development {s identical whether the low-low or the
high-low configuration I8 considered. The latter case, however, allows for 4
simplification that will result fn equations (31)-(32d).

The quantities that may be subject to observation, separately or {n
combination, are

p ... line-of-gight range:
Z = dp/dt ... line-of-sight velocity (or range rate); snd
ﬁ o db/dt o dzp/dt2 ... lpe-of-sight acceleration,

All of the @bovu nymbol {sm Implies the complote (unabridged) gravity field.
The preuant'anulynlu {8 concerned with 5, especially In view of expressing the:
lntter in 8 reafdual) gravity fleld., The line-of-sight range s given by

e e 4172
p = (KIZ &12’

” IKIZI ' (2)
which Is used in forming ¢, the unit vector in the diroction Sat., 1 - Sat. 2:

ep X, (3)

[92]




The notation such as 5?2 is avoided here; instead, this quantity would be

2

written as X, _+X _  or |§]2| .

12 =12
other vector.

The time derivative of p follows from (2) as

%1274,

or

p - )_(.12'9 .

Equation (3) yields the time-derivative of e:

-1 g -2 . -1
Xip="° X, *+0p

It

(do '/dt) X, ¢ p

£ 12

or

. -1 - .
e=po (X, -pe)

We notice that é-g=0 so that the vector é is perpendicular to e.

it follows that
P Eppet dpre

which, due to (5) and (4), becomes

o= Xre e (1X,17 - 60

As a matter of interest,

LSPIRRS ST g SPA L E : ST
where &12 N is the component of glz perpendicular to e, we have
o2 . 2 . 2
R SPLEE SPY PP L SR L
and (6b) can be presented as
: 5 -1 2
= . t
p 2(.]2 g + p l)_(;z'ny
&

(6b) can be given in an alternate form.

A similar statement applies with regard to any

(4)

(5)

From (4)

(6a)

(6h)

In writing

(6h')




3. GEOMETRIC QUANTITIES IN A RESIDUAL GRAVITY FIELD

We now introduce a reference field and denote the guantities computed in it

. O s c g€ LC  C goC O
by a superscript ¢, such as in gl, KI' 51, 32, {2, &2. and

: .C s C s C = C =C L C -
X, = X, - X . Kin = Ky - B X, = X, - X, . (7)

In analogy to (2) and (3), one has

c c c \1/2
o = (X, ,°X,,) : (8)
eC _ C)-l x(: (9)
e = up 210 -

Precisely the same procedure that resulted in (4), but carried out in the

reference field, yields

*C *C C
= e . g
S P (9')
N \ " : " . . + . (': .C:. C:
For the "high" satellite, it is usual to adopt §2 32, &2 32, and Kz &2, but

here this simplification will be left for the very end. In differencing (4) and

(9'), we obtain
e - XS, 0" (10)
The difference on the left-hand side of (10), which owes its existence to
the residual gravity field, 1s symbnlized by 55:
& =p-p . (11)

This quantity is called the residual line-of-sight velocity. In order to bring

{10) to a convenient form, one makes the following approximation:

Thus, (10) is written as

. : o
- .0 3
dp - 0K e (13)
where
. . ¢
) 14)
B Yo X t
Although the symbol = has been replaced in (13) by =, the approximation present

in {13) should be kept in mind.




In a similar vein, the procedure that resulted in (6b), but carried out in

the reference field, gives

1 2

p° = Ki,ee® + (09 TES,1% - (9% (15)

In subtracting this equation from (6b), and introducing an additional

approximation akin to (12}, namely

p = pc , (15')
we obtain

PP c c,-1.,¢ 2 _,5c 2 2 °C\2,

6p = 0X ,ce” + (p7) [IX,] RPN p- + (p7)" ], (16)
where

S0 =p-0°., &K, =X, X

12 =12 =12

The quantity 6b {s the residual line-of-sight acceleration. Working in terms of
gc, pc. etc., rather than in terms of e, p, etc., has the practical advantage in
that the reference field is known and allows for the actual computation of such

quantities. We re-write (16) as

sp - ok e’ ¢ (05)71 6T (16")
where 6T represe~ . the quantity inside the brackets of (16):
oy 2 gCc 2 .2 -, 2 "

At a later stage, the approximations (12) and (15') will be removed in order to
obtain results rigorous to the first order, i.e.. to within the first
differentials. Corrections due to both approximations will affect (16) and

(16') directly; subsequently, a correction due to (12) will affect 8T via (13).




4. REFORMULATION .. THE RESIDUAL LINE-OF-SIGHT ACCELERATION

We consider the vector Qﬁl from (14), which rcan be written in several

2
forms:
. _ . . uc - . ) . ~ cc B ‘C
Q§]2 - 512 512 X, 31 (52 51)
~ » _ .C - . B IC _ . _ .
BRI "Rt Tl ¥ X, - %, . (17)

where the last two symbols have been introduced as

. _ . - oC 0 - . B -C
oK) = X - X 0%, = X, " %

In returning to the formalism of (14). we have

. 2 . . : C . . _ < C _ ‘. 2 i . .'C . ’-C '2
2 SPLRY PR S PLAAY SPR ¢PY ESPL L SPIR SPIRRE 2P
and, accordingly,
. 2 . 2 : $C C 2
[ [T . - :
Bypl = 18Rl v 2Kk 7 gy
If this expression is substituted into {i16"), it follows that
. 2 : . C c 2 +2 c 2
= ! . - } - +
OT = 18X,,1  *+ 28,781, = 2iRpl ~ o+ (p)
. o 5C 12_gC _¢C |
or, upon recalling (14) and the fact that |§12] —&12 &12.
5T = 1o%,.12 + 2XC. 8k -~ p° + (55)% (18)

—12 12 —12

We first denote the last two terms in (18) by 6K, and express them as
sk = -p° v 0% = 0 2+ %)
From (11), the first factor on the right-hand side is Gb and the second factor
is 6p+2p°, yielding
5k = 8p° - 265 8p

Upon adopting bc from (9') and 6b from (13), which contains the approximation
alluded to earlier, it follows that

-2 X C e C ¢
5K 8% - 2(K e 18K e ) (19)




Next, we decompose the vector g& into two constituents, the first along

12
gc and the second normal to it (identified by the subscript n):

0 . c C .
0Xip = (&KX ,ce)e” + X))

The dot product of this equation with giz vields

XS, -8%. ., = (XS

C * C +C °
12798, © (e ) (8K, ,ce7) + X 500K

—-12 —12,n

of which the first term on the right-hand side is needed in (19). The latter

then reads

2 . C . oC .
OK = ~6p" - 2,00, ¢ 2% in

and (18) becomes

12 - 5p° + 2XC, 8K . (20)

6T = |8X 12 %212 .n

12

With this quantity substituted into (16'), the residual line-of-sight

acceleration is presented as

. . c c -
6p = 8X,,ce + (p7)

! 2 5p% v 28 k.. ) . (21)

(|§512' 12 —12,n

This result is only intermediate, since it does not account for the effect of

o
127828

two terms inside the last parentheses) corresponding to second-order

considered below. Moreover, it contains two terms (the first

differentials, which subsequently will be neglected.




5. RESULTS RIGOROUS TO THE FIRST ORDER

To correct two out of three approximations implied in the preceding
development, we return to equation (16) and observe that it was obtained from

(6b) and (15) upon adding the following expression to (6b):

“ c o c,-1 . 2
Xip0e  X,ce+ (o) (X,

2 -1 .2 .2
" - 07) - p (I>_(12| - p)

Accordingly. the correction (i.e., minus the above expression) is

. A, . 2 .2
§12.é§ + ap (IKIZI - P ) ’ (22)

where the first term is due to (12), and the second term is due to (15').
Upon consulting (2), one forms

ép - Q&lz-g , (23a)

VA T (23b)

With the aid of (23b), the differential of (3) is obtained as

se - p l[sx (8%, -ele]

12 12

where (3) has also served in a substitution. Since the second term inside the

brackets is the vector §§12 projected onto e, it follows that

1
2 PR (24)

I

where the subscript n indicates the direction normal to e. We recall that
following (19), n indicated the direction rormal to gc. However, this
difference in interpretation is of little consequence at the present stage.
In particular, the quantities e, p, etc. in (22)-(24) can be replaced at will

c c . . . .
by e, p°, etc., since such approximations introduce errors corresponding only

to second- and higher-order differentials. These replacements will henceforth

be made without further mention.

Next, with the aid of (4) we develop the last factor in (22):

I2 -2 2

I X - X X X e [
1 N SPYe SPRRE SN (25a)

12

Since 312 can be decomposed into two orthogonal constituents in a familiar

manner as

11




12 12 12.n °
it follows that
X278y, = (3,8 Xi2'%12.n

and (25a) becomes

. 2 .2 . .
lﬁlzl - p = 512')_(.12.,) (25b)

The first term in (22), which owes its existence to (12), is denoted cz. and the
second term in (22), which is due to (15'), is denoted c3. With the aid of (24)
and (25b) together with (23b). we write

_ c, -1 ¢

€= (P X0 s (26a)
_ _,.c.-2 N X A

¢g = ~(p) (oK e V(K Ky n) (26b)

An additicnal correction, denoted c4, is due to the substitution of 65
from (13) into 6K in (19), which entails the approximation (12). In particular,
in obtaining (19) we have replaced the rigorous value of 55 from (10) by the

expression in (13), i.e., have deformed db by

Accordingly, the correction for 6b will be

P

From the relation preceding (19) it is apparent that the correction for 8K and
thus also for 6T will be )

-2bc 3 -de

and from (16') it follows that the correction for 55 will be

1 bc X, -be

‘Z(pc)_ 212 = -

In consulting (24), we finally deduce that

c, 2 :c gcC
6 = "2le) o R0k (27)




We are now in a position to formulate the final version of 65. rigorous . to.
within the first differentials. In returning to (21), we discard the térms
s 2 .2
16X, , 17 - 60 .
which are essentially second-order quantities, as was mentioned earlier.
(Consistent with this fact, Hajela [1978], Rummel [1980), and Jekeli and
Upadhyay [1990] show that the above expression is negligible.) Clearly, all

“the other second- and higher-order differential quantities generated by the

réplacements described following eguztion (24) are neglected as well. Before
transcribing (21) with the corrections Cyr Cq. and C4 included, we present the
identity

oc . _ oc . .
X120 0 = %12, 0"%yp (28)

which shows that the index n can be shifted from one constltuent to the other.

This fact, easy to verify, applies in conjunction with general vectors, ndét only

those shown in (28); here it will be used also for C, in (26a) and Cy in (27).
wWhat remains of the second term in (21) will be denoted as cl, and will be
transcribed as indicated in (28). In conjunction with Cy in (26b), we will use
the identity
Y _ € g€ o qx€ 2 ,
X2 KIZ.n - Klz.n &lz,n IKlZ.n' ' : (28')

which agéin hblds true for general vectors.

e

In transcribing and completing (21) according to the above, we have

6p = 8X e +¢c +tc, +c, +tc, (29) °

where the first-order corrections are

€y © 2097 Xiz,n'ﬂ'—lz ' | (30a)
c, = (0% RT, 8K, . (30b)
cg = )% kG, o1 S any, O (ae)
ey = 2009200 RS, ex . | (30d)

13



Since, in practice, the reference field is sufficient for an accurate

description of the position, velocity, and acceleration of the "high" satellite,

it is permissible to adopt

X1, = 8, . 2. SPR 2 S 0Xyp = "%y

In this case, the formula (29), (30a-d) simplifies to read

. . c ' . ' '
Sp = _5_)(1-9 t ey, ey, (31)
where the first-order corrections are
VoL c,-1 gc S
¢y = 2le) Xy o8 (32a)
v _¢.cy1 e .
c, = ~(p7) Klzln oX, . (32b)
. c,-2 :C 2 ¢
Cy = (p7) '512,n' e 6_1 ' (32c)
C - 2(0%) 7% 5% %S, X (32d)
€4 = (P P 212 0%y -




6. SIMULATED RESIDUAL LINE-OF-SIGHT ACCELERATIONS,
AND ASSESSMENT OF THEIR MODELING

The simulations in this study involve two arcs of the "low" satellite
generated by Gleason [1991]. The first arc herein is, in fact, the very first
of 143 generated arcs entering the 10°-square equatorial oceanic area bordered
by the lines of 5° E, W, N, and S. And the second arc herein is the arc
associated with the greatest modeling errors among the 143 arcs; below we refer
to it as the "worst"” arc. The "low” satellite, denoted Sat. 1. emulates a
typical space -shuttle orbit of approximately 300 km altitude, while the "high”
satellite, denoted Sat. 2, emulates one of the GPS satellites of approximately
20,189 km altitude. Among the GPS satellites, the one chosen for simulations of
the residual line-of-sight accelerations is the one which has a minimal zenith
distance with respect to the "low" satellite. In [Gleason, 1991] the average of
such minimum distances is reported to be 28°. Although the duration of the

"low" arcs over the oceanic region of interest is two minutes or less, the two
arcs serving in the present study are extended to 181 s. Gleason [1991] uses
Rapp's 1981 geopotential coefficients through harmonic degree and order
(180,180} to describe a field, which he calls “true”, approximating the complete
gravity field of the earth, while for the reference gravity field he chooses a

(6,6) subset of these coefficients.

The mathematical model for the residual line-of-sight acceleration is {29).
(30a-d). The above first arc serves mainly for the determination of the step
size used in the Hamming orbit generator. which would vield the time-derivatives
with sufficient accuracy for any epoch within three minutes from the epoch of
the state-vector. Although in [Gleason, 1991} the step size is one second. here
three step sizes have been tested: At-1 s, At=0.1 s, and At-0.01 s. At a

desired epoch, the time-derivative is computed by
[value (epoch+At) - value (epoch:  At)]/2At
The step size At-1 s is deemed too coarse for the precise calculations
needed in the model verification. In particular, errors in 5b have been found

to range from 0.04 mgal to 0.18 mgal for ecpochs ranging from 2 s to 179 s from

the state-vector epoch. The step size At=0.1 s reduces the magnitude of these
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errors By over 90%. To produce results accurate to 0.001 mgal or better,
At=0.01 8 is adopted. The step-size errors affect the "true"” 65 and the fi}st
term on the right-hand side of (29), called "basic term”, by approximately the.
same amount. Thus, the error of the basic-term modeling ({.e., the difference
between the basic term and 8p), as well as the error of a more complete
modeling, are affected by the step-size errors to a much lesser degree than
0.001 mgal, perhaps by two or more orders of magnitude. We conclude that for
the modeling-error analysis, the step size At=0.01 s is entirely satisfactory.

- With this step size and a (8,8) reference field, the values of 6; on the
first arc have been generated in four intervals from the state-vector epoch:
28, 608, 120 8, and 179 s. These four epochs will be used throughout the
analysis. The simulated values of 65 at these epochs are

-2o883 ’ -3:376 » '10697 ] 3:782 ’

the units being milligals. The corresponding values of the basic term differ
from the 65 values by the amounts, called errors, which are listed (in mgal) as

0.002 , 0.018 , -0.043 , -0.142 . (33a)
- When the term ¢y is included, the errors decrease substantially:
- -, ~0.0004 , -0.0009 , 0.0011 . (33b)
Finally, when also the terms Cye ca. and c4 are included, the errors become

- -0.000005 , 0.000003 , 0.000002 . (33¢)

The notation "--" indfcates ccmpletely negligible amounts. Already at this
early séage, the validity of the mathematical model (29), (30a-d) is confirmed.
The smull remaining errors displayed in (33c) stem partly from neglecting {he
second- and higher-order differentials, and partly from the step-size errors; -
the round-off errors are negligible here (with the double-precision arithmetic).

At a state-vector epoch the errors are zero, since the position vector 51

and the velocity vector X. in the complete gravity field are equal to their

=1
counterparts }n;the reference field by construction. (For the "high" oa;ellitc
this equality holds true, or nearly true, also at epochs different from the

state-vector epoch.) Accordingly, at a atate-vector epoch we have
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which implfes that
88y = 0 BRyp = 0
, 2-‘,20;' . p.= Pc Ve , '
Thus; all four corrective terms c, through Cy In (29), as well as al) second-

and higher-order differential terrs, are zero, and the basic term supplies the
rigorous value at any epoch where the state-vector is given. The main question
to be answered {8: How !ab from the state-vector epoch is the basic term
accuraté'enough to represent alone an acceptable mathematical model?

In considering the first arc, and requiring the modeling accuracy to be at
leust 0.1 mgal, we observe from (33u) the basic terms alone would be acceptable
for epochs separated by nearly three minutes from the state-vector epoch,
However, the situation depicted by the first arc is overly optimistic. If we
consider instead the "worst” arc in the same context, f.e., with a 0.01 s step

'ﬁizq and a (8,8) reference field, in lieu of (33a) we obtain

0.010 , 0.269 , 0.386 , 0.845 . (34)

Since the pertinent oceanic area §s geophysically tranquil, the relatively large
errors in (34) may be the norm for many other regions., Equation (34) indicates
that the basic term alone could represent a (marginally) acceptable model only

in the case of observational epochs closer to the state-vector epoch than 30 8.

We now present in detafl the results that culminated in (34). This wtla
confirm, once again, the validity of the model (29), (30a-d), and suggest a
gimplified residual line-of-sight model, although not as simple as the basic
term alone., We recall that the step size is 0.01 8, the "true” gravity field
is given by (180,180) spherical-harmonic coefficients, the reference field is
given by the (6,8) subset of these coetticient, and the results are listed in
milligals, - Two additfonal groups of results will be presented, coirolponding
to (8,8) and (10,10) reference gravity fields. As peripheral information, we
1ist the values of 3p for the throe reference ficlds as obtained for the usual
four epochs (2 8, 60 s, 120 8, and 179 s from the state-vector epoch): ‘
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(6,.6) ..... 2.607 , -2.000 , 0.417 , 2.038
(8,8) ..... 3.077 , -0.423 , 3.314 6.191
(10,10) ..... -0.530 , -5.069 , -1.788 , 1.130

These values do not reveal any clearcut pattern, or significant differences in

magnitude, which would single out one reference field in preference to another.

In proceeding in detail with the (6,6) reference gravity field, we will

list all the results to six decimals. The term ¢, will be presented separately,

1
while the terms Cy. Cqo and Cy which all depend on QEIZ' will be combined into
the term czvc3+c4. For the sake of interest, a term containing the second-

order differential quantities seen in (21) will also be listed, written as (z):

2

(z) = (09 7 Tegk 12 - 6

2

Clearly, this term accounts only for some second- and higher-order differential
quantities. [ts listing will illustrate that it is negligibly small, as already

transpired from (Hajela, 1978], [Rummel, 1980}, and {Jekeli and Upadhyay, 1990].

The guidance to the four groups of results associated with the "worst" arc
is as follows. Above each group is listed the time interval from the state-
vector epoch (2 s, 60 s, 120 s, or 179 s), together with the corresponding value
of éb (see also the preceding outcome for the 6,6 reference field, where these
values are shown to three decimals). Each group proper begins with the line
headed "individual terms"”, where the first item is the basic term, the second
item is the term cy. the third item is the combined term CytCatCy. and the
fourth item is (z). The next line is headed "modeled 6p", where the model is
presented in a cumulative fashion; the first item is the repetition of the basic
term, the second item is [basic term + c]], and the third and last item is

[basic term + ¢, + (c2+03+c4)], i.e., the complete right-hand side of (29).

{The value in t;e second or the third item is found as the value in the
preceding item on the same line plus the value just above the desired item.)
Finally, the third line is headed "remaining errors”, and it contains the errors
in the values representing "modeled 65" of the second line. (Each of the three
items on the third line is computed as the value just above it minus the value

db listed above the first line.) All values are rounded-off to six decimals.
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The four groups of results are listed below.

individual terms:
modeled 6@:

remaining errors:

60 s

individual terms:
modeled 8p:

remaining errors:

120 s

individual terms:
modeled 8p:

remaining errors:

179 s

individual terms:
modeled 6@:

remaining errors:

basic term

2.616992
2.616992

0.009957

..... 5p =

basic term

-1.731951
~-1.731951

0.268514

..... 5p =

basic term

0.803185
0.803185

0.386250

..... &p =

basic term

2.582464

2.582464

0.544912

Sp - 2.607035

¢,
-0.009953
2.607039

0.000005

-2.000465

¢
0265731
1.997682

0.002783

0.416935

%
-0.378171
0.425013

0.008078

2.037552

2.051759

0.014207

19

(‘,2' ()3' (24

-0.000004

2.607036

0.000001

C2‘(,‘3*’C4

-0.002781

-2.000463

0.000002

C2+(33*C4

0.008090

0.416924

~0.000012

Cp'€3%%

-0.014204

2.037555

0.000003

(z)
( --)
(35a)
(z)
(0.000001)
{35b)
(z)
(0.000004)
(35c¢)
{z)
(-0.000001)
{35d)




For the sake of interest, we list the six state-vector components (in

inertial coordinates) at the epoch 179 s for the "low" satellite, followed by
the six state-vector components at the same epoch for the "high” satellite, both
state-vectors having been generated in the “true” field; the position components

are given in meters, and the velncity components are given in meters per second.

Sat. 1: X - 695,616 623 . Y . 6.628.710.831 , Z = -190,943.856 ,
X - -6.772.261608 , Y 612.098398 Z = -3,683.667565 ;

sat. 2- X - 10,970,235 262 . Y = 22,255.878.282 , Z = -9,466,691.250
X = -1.651.398895 . Y = 2,029.425766 , Z = 2,857.380367

Accordingly, at this epoch we have |§Il=6,667.844 m, i.e., the altitude of the
first satellite is about 290 km; and |§2|:26,557.267 m, i.e.. the altitude of
the second satellite is about 20,180 km. For the first satellite, the component

differences le and Qﬁl are
-0.081 , -0.450 -0.743 0.000370 , -0.004181 , -0.007800

The first three values reveal that ;§§1i204872 m. For the second satellite the
component differences are essentially zero (they are 0.000001 and -0.000001 in
X and Y. respectively, smaller otherwise). This is consistent, for example,

with the statement that followed equation (30d).

The error values in (35a-d) warrant a discussion. We begin with the third
item in each of the lines (35a-d), i.e., with the error remaining in the
expression [basic term -+ ¢yt (02+03*C4)]‘ This error is exceedingly small for
all four epochs, confirming the theoretical formula and indicating that the
second- and higher-order differentials are negligible within three minutes from
the state-vector epoch (and probably much beyond three minutes), that the step-
size errors are inconsequential, and that the orbital simulations are flawless.
In fact, the reliability and accuracy of the orbit-generating program perfected
by Gleason [1991] is verified here in an independent and interactive fashion
(interactive in the sense of high-low satellites, high-low order gravity
fields). In continuing with the second item, i.e., with the error remaining in

the expression [basic term + ¢ ], we note that this error is at or below the

1
level of 0.01 mgal for all four epochs. Thus, the corrective term <, is

sufficient to extend the validity of the basic term to three minutes from the
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state-vector epoch, and much beyond three minutes if one is willing to accept
modeling errors on the order of 0.1 mgal. Finally, the first item, i.e., the
error in the basic term, indicates that the model comprising the basic term
alone introduces inadmissible errors already within a few tens of seconds from

the state-vector epoch, even if one tolerates the modeling error of 0.1 mgal.

Faced with the unacceptability of the basic term for accurate modeling of
the line-of-sight accelerations in the gravity field residual to a (6,6)
reference field, one is compelled to ask whether a reference field higher than
(6,6) could at least partly remedy this shortcoming. Accordingly, two
additional computer runs have been analyzed, utilizing an (2. 8) and a (10,10)
reference field. First of all, we remark that the errors in the model [basic

term + ¢, + (c, +tcC +04)] are again exceedingly small, listed as

1 2 3
(8.8) ..... 0.000005 , 0.0000601 , -, 0.000007
(10,10) .... 0.000006 , 0.000003 , -0.000002, 0.000005

There is no essential difference between these errors and the errors presented

above for a (6,6) reference gravity field.

Next, we present the errors of the basic term in conjunction with these
reference fields, again for the four chosen epochs (2 s, 60 s, 120 s. 179 s}).
We enhance the usefulness of the results by adding also the errors of the model
[basic term + cl], in parentheses. These two kinds of errors are listed below
to three decimals. For the sake of completeness, the errors presented earlier
for a (6,6) reference field (see equations 35a-d) are recapitulated using the

same format:

(6.6) ..... 0.c10 () , 0.269 (0.003) , 0.386 (0.008) . 0.545 (0.014)
(8.8) ... .. 0.005 (--) . 0.108 (0.002) , 0.046 (0.005) . 0.041 (0.010)
(10,10) .... 0.008 (- ) . 0.188 (0.001) , 0.166 (0.001) , 0.162 ()

Although we notice improvements in the basic term in conjunction with higher
order reference fields (as compared to the 6,6 field), the improvements are not
monotonous. For example, the error of 0.386 mgal for the (6,6) reference field
improves to 0.046 mpgal for the (8,8) reference field, but then it grows to 0 166

mgal for the (10,10) reference field.




From the above results it appears that a re'atively high-order reference
gravity field would have to be utilized to substantially lower the error level
of the basic term, if this is indeed possible. As another attempt to make the
errors in the basic term acceptable, one could lower the time interval between
the state-vector epoch and any observational epoch to, e.g., less than 30 s.
(Although in the case of the 8,8 reference field the errors in the basic term
are seen to decrease beyond the epoch 60 s, this feature is exceptional as is
gleaned from the results for the 10,10 and, especially the 6,6 reference fiela.)
Both these possibilities, whether exploited separately or in combination, would
limit the practical usefulness of the mathematical model represented by the
basic term alone. Moreover, such a model would still suffer from poor or

marginal accuracy.

We conclude the simulation analysis by mentioning that due to computer
limitations, one is naturally concerned about the possibility that the simulated
errors may be overly optimistic. This possibility stems from the fact that the
"true" gravity field has been associated here with a (180,180) field rather than
with a (360,360) or a more detailed field. However, we alleviate such concerns
by presenting the errors corresponding to a (L €) i2ference field (as used

earlier) and to a mere (60,60) "tr.." field:
0.010 (--) , 0.265 (0.003) 0.380 (0.008) , 0.538 (0.014)

While 6b at any of the four epochs has changed by 0.2 mgal or less between the
(60,60) and (180,180) "true" fields, the errors in the basic term are seen to
have changed by 0.007 mgal or less, and the errors in [basic term + C1] are seen
to be unchanged. By far, most of the change in the residual line-of-sight
acceleration due to the change in the “"true” field is absorbed by the basic
term. These conslderations, extrapolated to more detailed "true" fields,
indicate that the simulated error analysis is likely to be valid with sufficient

accuracy also in the actual gravity field of the earth




7. RECOMMENDATIONS FOR RESIDUAL LINE-OF-SIGHT ACCELERATT"% MODELING

Guided by the above results and considerations, we envision a manageable.,
yel accurate mathematical model represented by [basic term + Cll' We have seen
that to within three minutes from the state-vector epoch, and probably much
beyond three minutes, the errors in such a model are negligible even for a (6,6)
referenrce gravity field. Two avenues open quite naturally before us. The first
is to use the term cl as a fually equivalent partner of the basic term in the
model, involved in the formation of the design matrix for the collocation

adjustment, of a priori covariances, etc.

The second avenue is much simpler and much more efficient. In consulting
the detailed results listed in conjunction with the (6,6) reference gravity
field, we observe that for the most part the term c1 is significantly smaller
than the basic ‘erm. This is all the more so for shorter time intervals from
the state-vector epoch, and for higher-order reference fields. Thus. under
certain stipulations (which should be subject to further ests, including tests
covering additional regions of the globe), the term cl could be treated not as
a full partner of the basic term, but merely as a small observational correction
separate from the model. This conceptual simplification is far-reaching. It
makes it possible to revert to the basic term as a highly efficient mathematical
model for the residual line-of-sight accelerations by overcoming the initial

shortcoming of this model, the low accuracy.

The crucial aspect of this approach is the computation of the correction
Cl' In practice, c1 can be approximated by the same procedure that has been
used in this analysis. The true gravity field can be approximated, e.g.. by a
(180,180) field. and the satellite orbits in question can be approximated by
simulated orbits sufficiently close to their true counterparts. When necessary,
the approximating orbits can be rectified (to correct for their drift, in time,
with respect to the true orbits). The step size can be lowered to 0.1 s, etc,
(for better accuracy), but only in the immediate vicinity of the observational

epoch; elsewhere the step size can be much coarser in analogy to the technique

utilized by Gleason [1991].

Akin to a previous concern ahout the validity of error analysis using a
truncated representation of the gravity field, one may now be concerned about

the accuracy of c] computed in such a representation. It is assumed that the
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spherical-harmonic coefficients providing this representation are reasonably

- accurate. An example using a (60,60) set of coefficients versus a (180,180)

set, where the former is a subset of the latter, again helps to alleviate such
llcomputed with a (60,60) truncated field in brackéts.
computed with a (180,180) "control” field in braces, we have

coricerns. In writing c
and in writing c1
for the usual four epochs:

[-0.010]{-0.010}, [-0.266]{-0.266}, [-0.372](-0.378}, [-0.524](-0.531}.

Accordingly, for an observational epoch separated by three minutes from the
state-vector epoch, the effect of the indicated truncation generates a mere
0.007 mgal difference in the value of cl. corresponding to the outcome seen at
the close of the preceding section. We reiterate that by far, most of the
change in the residual line-of-sight acceleration is absorbed by the basic term.

This behavior of the basic term further supports the concept of using c, as an

1

.observational correction computed in a reasonably detalled and reasonably

accurate "true” grévity field.

In the above setup., an approximation to the true correction c1 can be

obtained according to (30a) or, in practice, according to (32a). 1In principle,
the suggested approach uses an “adjoint model"” (operating on assumed satellite

orbits in conjunction with an assumed gravity field) alongside the "true model”
(operating on the actual satellite orbits governed by the acthal gravity field),

but only insofar as the correction < is concerned. The advantage of this *

approach, based on the in-practice ascertainable smallness of ¢, relative to the

1

basic term, is substantial. Due to 4 being considered as an observational
correction, the need for its treatment in view of the design matrix, of a priori

covariances, etc., is eliminated.
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8. CONCLUSION

In the: first part of this study, the residual line-of-sight acceleration
for a general satellite configuration is developed rigorous to within the first-
order differentials. In addition to the usual "basic term"” treated in
geophysical literature, two kinds of corrective terms are derived: the term c¢

(related to satellite velocities) and the combined term cz+cs+'c4 (related to1
satellite positions). Subsequently, the general formulation is specialized for
a high-low configuration. In this case, the term 4 depends essentially on. the
residual velocity vector of the "low” satellite at the epoch of observation, and

the term (02+(: +c4) depends essentially on the residual position vector of the

3
same satellite at the same epoch. The above qualifier "residual” implies the
difference between a vector expressed in the complete gravity field and its

counterpart obtained in the reference gravity field.

In the Jatter part of the study, the analysis of computer simulations for
a high-low configuration confirms the first-order general formula (devoid of S
approximations involving the "high” satellite). In all cases examined (two arcs
of up to three minutes in duration, three different reference gravity fields),
the first-order results agree with the known “"true” values, obtained with the
step size At=0.01 s, to within 0.00001 mgal. The analysis clearly indicates
that the basic term lacks the accuracy to represent alone a valid mathematical
model: in one realistic simulation its error surpasses 0.5 mgal. However, when

this term is corrected by c its accuracy improves significantly, attaining the

10
level of 0.01 mgal or better. Thus, the term (c2+c +c4) as well as all of the

higher-order differentials can safely be neglected ;1 practice. As a further
possible simplification, it is recommended that the term 4 be considered nefely
as an observational correction in the subsequent (collocation) adjustment,
computed in an "adjoint model” where the true gravity field and the true
satellite orbits are substituted for by their sufficiently accurate and easily

manageable approximations.
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APPENDIX

ALGEBRAIC DERIVATION AND A USEFUL TRANSFORMATION
OF THE FORMULA GIVING THE RESIDUAL LINE-OF-SIGHT ACCELERATION

To find the formal differential of the line-of-sight acceleration, we first

recapitulate the standard relations (2), (3), (4), and (6b):

12! e=0" X, p =X e,

i

p = |X

1,6 2 2
e+ p (X170 -0 )

p =R,

In forming the differential 6b of b. use is made of ép, 6|i12|2, and 652:

. 1/2 -1 .
LY PN PLER YA NP SPY R SPRS -2 SPRR -2 SPR
. 2 . . . .
M SPURERI LT SPLS SPY . PN P
.2 . . .
6p° = 2p Sp = 2p(8X e + X, Se)
We now readily deduce
Ax ~ o2 . 2 .2
L1 ST P I 2 SR 0P )
1. . . .
re 2Ky, 8k, o 20(8K, e v X y0e)]
where
-2 -1 1 o2

Since the differential 5@ pertains to the reference field identified by the

superscript ¢, all finite quantities above are attributed this superscript:

- iy c o C c.-2 ¢ s 2 oC .2
6o - 86X ,ce” + X008 - (p7) "¢ ELIPUD P (p7)7]
c -1 _¢C . *C, C oo e
+ (p7) T[2K 00K, - 207 (e 0K, ¢+ X ,08e)] (A.1)
where
se - (05 ax. - (05) %etax. )xC (A.2)
gc = 1o 9, P £ "9%15/3,

The formulation (A.1,2) is not very insightful or easily tractable. Moreover,

we wish to present Sp in a form where the "basic term” lez-gc is followed by
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the most important of the remaining terms. The analysis of Chapter 6 indicates

that such a term contains éﬁlz‘

In the general formula (29), (30a-d), this term is presented concisely as

c]. Thus, we attempt to transform (A.1,2) into a form such as (29), (30a d)

First, we use equation (9'); the decomposition of a vector into two orthogonal

constituents as in the step leading to equation (24); and the identity (28}:

X¢ 6% - o e%usk._ - %€

. . el c
$12°%%42 SR SPINR PRSP SPR R

= XY . 8X% - X

C M
21222120 “0X

12.n —12
As a result, we can already extract the term rl from (A.1):

c,-1 :.c :
¢, = 2(p’) 512,n'é512 . {A.3)

After this extraction, only the third term remains inside the second pair
of brackets in (A.1}); it contains de, which is also featured by the term
following the basic term in (A.1). Before proceeding further, we give e a form

more convenient than (A.2). In utilizing (9) in (A.2), we have

s, -1 c
ge < (o) [8X,, (8% ,ref)e’]

The expression inside the brackets is that referenced in the preceding paragraph

with regard to the decomposition of a vector. It thus follows immediately that

oe - (pc)_] QKIZ n o’ (A.4)

This relation could have been transcribed directly from (24).

Next, we express the second term on the right-hand side of (A.1). We use

{(A.4) as well as the identity (28) and the three lines following it-

C c.-1 ¢ c, -1 ,c
Riprde = (p) Xy 8Xy, = (o) Ky 18K,
Thus, the desired term is
c, -1 =¢
¢, - (o) Klz,n'éﬁla . (A.5)

To express the third term on the right-hand side of (A.1), we use equation
(9'): the notion of a vector decomposition utilized already twice above:. and

equation (28'):




sc 2 cc. 2 _ oC ¢ yC .. C,.C
1R, 17 = (01)% = X[, (8], - (K),re )e’]
_9C  gC _ . 4C 2
RPN RPN
Thus, the desired term is
. (.C\ -2 ¢cC 2 ¢
Cy = () ]élzlnl ) S (A.6)

The remaining term (besides the basic term) on the right-hand side of (A.1)
is that mentioned earlier, namely the last term inside the second brackets. To
give it a more concise form avoiding the explicit presence of §e, we express the

latter from (A.4), and use the identity (28) and the three lines following it:

e c. -1 ¢g¢C ~ c -1 cc
L P P T L SP I - S
Thus, the desired term is
C.~2 *C sC
c,. = -2(p") p X +6X . (A.7)

4 12, n —12

We are now in a position to write (A.1,2) in a convenient form as follows:

c
ép - §512~g L SR U (A.8)

where the terms Cl' 02, Cq and c4 are given respectively by (A.3,5,6,7). This
is precisely the final formulation (29), (30a-d). Although the formal algebraic
derivation resulting in (A.1,2) is short and straightforward by comparison with
the geometric considerations in Chapters 2 5, the system (A.1,2) is seen to be
far from final. Its transformation, carried out with the aid of relations from

Chapters 3 and 5, is lengthier than the derivation of the system (A.1,2) itself.

The final formulation above has two basic features. The first feature is
that every term on the right-hand side of (A.8) has an easy geometrical
interpretation, and is quite concise and tractable. The term , depends on

éilz' whereas €y Cqo and 4 all depend on éﬁlz and can be grouped together if

convenient. And the second feature is that the term c1 has been shown in

Chapter 6 to be very significant and in general much greater than the combined

term (<j‘uq‘c4). which, in many applications, may be negligible. Thus, a

sufficiently accurate yet easily manageable formulation appears to be
c

N S s ¢, -1 sC L5y
P INALLE SP N ST (A.9)
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